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Thermal convection in a horizontal plane Couette flow 

By ROBERT P. DAVIES-JONES? 
National Center for Atmospheric Research, Boulder, Colorado 80302, U.S.A. 

(Received 18 November 1970) 

We investigate the behaviour of infinitesimal perturbations introduced into an 
unstably stratified horizontal Couette flow. We assume that the fluid is Boussinesq 
and contained in an infinite conducting rectangular channel which is uniformly 
heated from below. The sidewalls are rigid and the Couette flow is generated by 
moving them with equal and opposite velocities along the channel. The top and 
bottom are assumed to be free so that we can separate variables. 

Without shear, the preferred modes of convection closely resemble transverse 
‘finite rolls’ (Davies-Jones 1970). Shear increases the critical wavelength so that 
the preferred modes become longitudinally elongated cells, or even longitudinal 
rolls in some cases. The critical Rayleigh number increases quite rapidly at  fist 
with Reynolds number, but at  higher Reynolds numbers it levels off to a constant 
value (which cannot be greater than the shear-independent Rayleigh number at 
which longitudinal disturbances fist become unstable). 

We also find that the disturbances are tilted in the same direction as the shear, 
and that the marginally stable ones transfer kinetic energy from the mean flow 
to the perturbations. Except at low Reynolds numbers, the long wave perturba- 
tions gain more energy through the conversion of mean flow kinetic energy than 
through the release of potential energy, even though the instability is convective 
in origin. 

1. Introduction 
In  a previous paper (Davies-Jones 1970) we investigated the stability of a 

Boussinesq fluid heated from below in an infinite rectangular channel with 
no-slip sidewalls and free top and bottom. The cells which appear at  the onset of 
convection were found to closely resemble transverse rolls [in agreement with 
Davis (1967)l. In  this paper we extend this work by including horizontal shear 
which is generated by moving the sidewalls at a constant rate in opposite 
directions. 

The stability of the unstratified problem (viscous plane Couette flow) has been 
investigated most recently by Gallagher & Mercer (1 962, 1964) and Deardorff 
(1963). Deardorff concluded that the flow was definitely stable to infinitesimal 
disturbances up to a Reynolds number of 1430. The trend of their results suggest 
that it is stable to small perturbations at all Reynolds numbers. 

Studies of stratified Couette flow where the shear is vertical have been made 
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by Gallagher & Mercer (1965), DeardorfY (1965) and Asai (1970), among others. 
Their problem differs from ours in an important aspect (apart from the orienta- 
tion of the shear); namely, the fluid is unbounded horizontally. They found that 
the preferred modes of convection are longitudinal rolls (i.e. rolls parallel to the 
mean flow). Asai showed that longitudinal rolls gain energy from the mean flow, 
but transverse rolls lose energy to the mean flow. 

The mathematical approach that we use here is similar to the one used by 
Gallagher & Mercer (1962, 1965), except that we compute the eigenfunctions as 
well as the eigenvalues. 

2. Mathematical formulation 
We use the following notation: x and y are the horizontal co-ordinates along 

and across the channel and z is the vertical co-ordinate. The subscript refers 
to dimensional quantities. The planes z* = 0,2h,  and y* = b, define the 
channel. u*, va and w* are the components of velocity in the x, y and x directions, 
p* is the pressure p* is the density, 8* is the temperature measured with respect 
to the average temperature, g, is the acceleration due togravity, and a,, v* and K* 

are the coefficients of volume expansion, kinematic viscosity and thermal 
diffusivity. 

We assume that the unperturbed mean flow, G*, is one of constant horizontal 
shear, uo* (i.e. 'ii, = uo* y*). The vertical temperature gradient, /3*, is constant as 
it is established by heat conduction. 

Infinitesimal perturbations, denoted by primes, are introduced into the 
system. If they grow with time, the initial equilibrium is unstable. We assume 
that the applied temperature difference is small enough so that we can use the 
Boussinesq approximation (i.e. la* 8,l < 1). We define dimensionless variables 
(non-subscripted) as follows. 

x, y, 2 = bG1k*, y*, %I, 
t = K* bGat,, 

u', v', w' = b,KG1[uL, v i ,  w;], 
el = -,pb,le;, 
p f  p-lb2 K - a  ' o* * * P*7 

where po, is the mean density of the fluid in the channel. The linearized perturba- 
tion equations are then 

.2Zlur + Pr Re vf = - aprjax, ( 1 )  

~ , V I  = - a p p y ,  (2) 
ap' Pr Ra 9 w f  = --+- 

1 az 16A4 "' (3) 
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where Z1 and g2 denote the differential operators [slat + Pr Re y(8lax) - Pr 0 2 1  

and [slat + Pr Re y(i3px) - V2], Pr = VJK* is the Prandtl number, 

is the Rayleigh number, Re = uo,b2,/v, is the Reynolds number, and A is the 
height-to-width ratio of the channel ( = h,/b,). 

We assume that the top and bottom are free and perfect conductors so that 

Ra = -9*"*P*(2h*)4/K*v*  

8' = W' = au'/az = a v ' p  = 0 at z = 0,2A (6) 
and that the sides are rigid and perfectly conducting so that 

(7 )  
(Perfectly conducting sides are chosen so that we can expand 8' in an infinite sine 
series later on.) 

U' = V' = W' = 8' = 0 at y = & 1. 

From (4) and ( 5 )  the latter are equivalent to 

V' = a d p y  = 8' = 2YZ8' = 0 at y = & 1, (8) 
but cannot be expressed simply in terms of either v' alone or 8' alone. 

The boundary conditions ( 6 )  allow us to separate variables by assuming that 

u'(x, y, 2, t )  

(9) 

where cr( 3 a; + icr,) is the complex growth rate of the normal mode disturbance 
with x wave-number k and vertical wave-number m( = qnr/2A; q = 1,2 ,3 ,  . ..). 
We assume henceforth that q = 1 since this gives the most unstable mode. 

The perturbation energy equation shows how the various forms of energy - 
namely, potential, perturbation kinetic and mean flow kinetic - can be trans- 
formed into each other. We obtain this equation by multiplying the real parts 
of (l), (2) and (3) by Re(u'), Re(v'), and Re(w') respectively, averaging the 
equations over one wavelength in x, adding the equations together and integrating 
over the cross-seetionalarea, X, of thechannel (the averaging operator is denoted 
below by a, bar). This gives after frequency integration by parts and use of the 
boundary conditions, 

'"p 2 at 
+ 3 + w12) dX = {E  . K'} + {P. F] 

where the last term clearly represents the loss of energy through viscous 
dissipation, and {x. K') = - Pr ReIIu'u '  dS, 

{P.K '}=-  
1 6A4 

represent the conversion of mean kinetic energy and potential energy into 
perturbation kinetic energy [as shown, for example, in Davies-Jones (1969)l. 

13-2 
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3. Longitudinal disturbances 
We can make some interesting deductions about longitudinal disturbances 

(i.e. those with no variations along the channel) without proceeding further. 
Since (2), (3), (4), (5) and the boundary conditions are independent of u‘ and Re 
in this case, we can solve these four equations for the eigenvalue (Ra or a) and the 
eigenfunctions v‘, w‘, 8’ and p’ and they must all be independent of Re. Further- 
more, when a/at = 0 we deduce that they are also independent of Pr (except forp‘). 
Thus, longitudinal disturbances become unstable at the same Rayleigh number 
for all shears and Prandtl numbers, and their growth rate, a, at a given Rayleigh 
number also has no Reynolds number dependence (but does depend on Pr). 

It follows from (I) that u’ varies linearly with Re, and is also independent of 
Pr when a = 0. Hence { E .  K’}cc Re2 and {P.  K’)E Reo, and both vary as Pr 
when a = 0. Thus, above a certain Reynolds number the perturbatioiis gain 
(or lose) more energy through conversion of mean kinetic energy than they gain 
through conversion of potential energy. 

We can also show that unstable or marginally stable longitudinal disturbances 
( CT 2 0) and even slowly-decaying ones (those for which a + Pr m2 > 0) convert 
mean kinetic energy into perturbation kinetic energy. The proof is as follows. 
By multiplying ( 1 )  by u’, integrating over S and using (9) we obtain 

Thus {a. K’} is always positive when a + Prm2 > 0 (since with k = 0 we can 
assume all the variables are real). Note that the Re2 dependence of {E . K’} has 
no effect on the stability of the disturbances because the loss of energy through 
dissipation by the x component of the viscous force also varies as Re2. 

4. Solution by Galerkin’s technique 

simultaneous differential equations in v’ and 8’ : 
By elimination of variables in (1)-(5) we obtain the following two independent 

Pr Ra a28’ 
16A4 ayaz 

2T1V2v‘+-- = 0, 

(15) 

We reduce (14) and (15) to ordinary differential equations in Band 0 by separating 
variables according to (9). We also use the transformation y1 = im(y+ l), and 
define new parameters 

(16) I A, = - 4a2 Pr/rr2 + ( 4/7r2) (ik Pr Re - a),  

A, = - 4a2/n2+ (4/7r2) (ik Pr Re - cr). 
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Suitable expansions for $and 6 which satisfy the boundary conditions (8) have 
been given by Gallagher & Mercer (1962, 1965). They are 

where the Y, are the eigenfunctions of the boundary-value problem 

d4Y/dy4 = p 4 Y ;  Y = d Y / d y  = 0 a t  y = 0,n. (19) 

We use Galerkin’s method to replace the differential equations by a set of 
algebraic equations whose solutions are the coefficients of complete orthogonal 
expansions. This is done by truncating the above expansions after N terms, and 
making the truncation errors in (14) and (15) orthogonal to each of the first 
N terms in (20) and (19) respectively, thereby obtaining a set of 2 N  algebraic 
equations. This procedure is the same as used by Gallagher & Mercer (1965). 

4.1. Computation of the eigenvaluues 

The final equations may be written in matrix form as follows: 

(A,A,+A,)a = RaBb, (20) 

(21) 

where A,, A,, B ,  C,, C,, D,, Dll, D,,, Do and E are infinite square matrices whose 
elements are independent of Ra, A, and A,, and a and b are infinite column 
matrices whose elements are the coefficients ar and b, respectively. 

WealsodefineA = A,A1+A,,C = C,h,+C,,D = D,~,h,+D,~h,+D,,h,+D, 
for later use. Eliminating b yields 

(22 )  

When Ra = 0 the problem reverts to that of three-dimensional unstratified 
plane Couette flow (or two-dimensional if m is set equal to zero). Then A, is clearly 
the eigenvalue and a the eigenvector of -A7lA0 [a result first derived by 
Gallagher & Mercer (1962)l. 

In  stratified cases we have the option of regarding Ra as the eigenvalue of the 
boundary-value problem with k, A, Pr, Re and u as parameters or of treating u as 
the eigenvalue with Ra as one of the parameters. We shall adopt each approach in 
turn. 

In  determining the stability boundary (locus of rr = 0) it is convenient to  
regard Ra as the eigenvalue. In  this case we find from (22) that Ra is the eigen- 
value and a the eigenvector of (C-EB-lA)-lDB-lA. The eigenvalues and 
eigenvectors of this matrix are generated by the QR-algorithm (Francis 1961, 
1962) and inverse iteration (Wilkinson 1965), respectively. b can then be 
obtained from (21). 

We assume initially that IT is zero on the stability boundary. In some cases, as 
Re or k is increased the lowest eigenvalue becomes complex which is physically 

(C, A, + C,) a = (D, A, A, + D1,h, + D,,h, + Do + Ra E )  b, 

( A ,  A, -t A,) a = Ra B(D,A,A, + D,,A, + D,,A, + Do + Ra E)-l (C,A, + C,) a. 
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meaningless since Ra must be real. In  such cases the critically stable modes occur 
in transitive pairs, i.e. with phase velocities rf: crJk, which we locate by varying 
lcril until we find the value for which the lowest eigenvalue is real. 

We now adopt the other approach in which cr is regarded as the eigenvalue. 
Assuming Pr = 1 yields a great simplification since then 

A, = A, (= h when Pr = 1)  

and we can rewrite (22) in the form 

(Ph3+Qh2+Rh+X)a = 0. (23) 

Provided that Pis non-singular, we can easily find a 3N x 3N matrix, A, of which 
h is the eigenvalue and 

kl 
is the eigenvector (written in partitioned form). h is found by the QR-algorithm. 
We could in principle determine the eigenvectors of A and hence obtain a but a 
much more economical method in terms of time and computer storage is to again 
compute a as the eigenvector of (C - EB-lA)-I DB-lA. 

Care must be taken to avoid spurious eigenvalues. For example, note that the 
limit Ra + 0 is singular because the matrices P and Q do not vanish in this limit 
as they should do according to (22). Consequently, 2N spurious eigenvalues enter 
as we approach the unstratified limit. 

4.2. Computation of the eigenfunctions 

Having computed the a’s and b’s, we evaluate 0 and 0 from (17) and (18). 
In  determining the other dependent variables we avoid term by term dif- 

ferentiations of (17) and (18) [which yield series which, if they converge at  all, 
do so much slower than the original series] by performing numerical integrations 
of the relevant differential equations. We define grid points across the channel by 

y $ = - - l + j h  ( j = - l , O , l ,  ..., J + 1 ) ,  

where h = 2/J. The exterior points y-,, yJ+l are used to satisfy boundary 
conditions. 

We determine @ by integrating the divergence equation 

8 m Pr Ra 
(k2+m2)@ = -2ikPrReB+- t2- 

dY2 1 6A4 

subject to the boundary conditions d@/dy = Pr (d20/dy2) at y = rf: 1, obtained by 
putting 0 = 0 in (2). After first making a transformation of dependent variable to 
reduce this to a one point boundary-value problem, we use the Runge-Kutta 
technique with error control to generate the solutions. 

a and 8 are obtained by writing the x- and z-equations of motion in finite 
difference forms, and solving for a(yj) and a(yj) by Gaussian elimination after 
applying the boundary conditions /ii = 8 = 0 at y = 2 1. 
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Lastly, we compute the divergence to give us a measure of the error in the 
solutions, and evaluate the Reynolds stresses, heat transports and rates of energy 
conversions. 

4.3. Convergence of the series 
As we go to higher values of the Reynolds or Rayleigh number, we need to 
increase the number of terms, N ,  in the series for 8 and 8 to attain the same 
accuracy. The reason for this has been given by Gallagher & Mercer (1962). 

.f 

a; 1500 
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Re= 100 

2ooo:g 5 
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- 

/ /  Rc=20 

/ Re=O 

7 5 0 1  I I , I I , 
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

2Ak + 
FIGWRE 1. The Rayleigh number of the two lowest modes at marginal stability as a function 

of 2Ak for various Reynolds numbers in the case Pr = 0.7, A = 0.5. 

As is usual in boundary-value problems the computed eigenvalues are much 
more accurate than the computed eigenfunctions. For instance, after retaining 
just ten terms in each series we find that for A = 0.5, Pr  = 1.0, k = 2.0, Re = 62, 
the method with Ra as the eigenvalue yields Ra = 4997, gr = 67.4 for ai = 0 
compared to Ra = 5000, a; = 6 7 4  as given by the 'a method'. However, we 
chose N = 30 and J = 50 so that we could compute the eigenfunctions accurately 
enough for the divergence to be about one order of magnitude smaller than the 
individual terms in the continuity equation. 

5. The results 5.1. The stability boundary 

Calculations were performed for three Prandtl numbers, Pr = 0.01 (indicative 
of a low Prandtl number), 0.7 (air at room temperature) and 6.0 (water at 28 "C). 
Figure 1 shows the Rayleigh number at marginal stability (a, = 0) as a function 
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of 2Ak (i.e. the x wave-number in units of the inverse of the channel height) for 
the two lowest modes at various Reynolds numbers for Pr = 0.7 and A = 0.5. 
For no shear the curves for the two modes cross, but for Re = 20 (and higher 
values) the curves join to form a single curve along which the two modes are a 

0.4 

0 20 40 60 SO 100 

Re -+ 
FIQURE 2. Critical wave-number (in units of' the inverse channel height) versus 

Reynolds number for A = 0.5 and various Prandtl numbers. 

800 I I I I I I 
0 20 40 60 80 100 

Re + 

FIGURE 3. Critical Rayleigh number versus Reynolds number 
for A = 0.5 and various Prandtl numbers. 
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transitive pair with equal but opposite phase velocities. For the sake of clarity 
only the common branch of the curves for Re = 100 has been included. We have 
shown that the stability of longitudinal (k = 0) disturbances is not affected by 
shear. It is apparent that other disturbances are generally stabilized by shear, 
and hence that the critical wave-number (i.e. the wave-number that appears at 
the onset of convection) decreases with increasing Reynolds number. 

2.4 

0.8 

0.4 

T A = 0.50 

0 20 40 60 80 100 

Re -+ 

FIGURE 4. Critical wave-number (in units of the inverse channel height) 
versus Reynolds number for Pr = 0.1 and various aspect ratios. 

Figures 2 and 3 show the critical wave-number, 2Akc, and Rayleigh number, 
Ra,, as functions of the Reynolds number for Pr = 0.01 and 0.7 and a fixed 
aspect ratio ( A  = 0.5). For Re = 0 it is well known that Ra, and k, are inde- 
pendent of Pr. For Pr = 0.7 the critical wave-number quickly approaches 
zero and the critical Rayleigh number reaches the value of Ra at which longi- 
tudinal rolls become unstable (indicated by the hatchmark on the axis and 
hereafter referred to as the ‘k = 0 value’) and levels off. For Pr = 6 these limits 
are attained so rapidly that the ascending or descending parts of the curves 
coincide with the ordinate axes. For Pr = 0.01 the curves level off before reaching 
these limits. 

Figures 4 and 5 show the same curves for Pr = 0.7 and different aspect ratios. 
We have indicated the k = 0 values (which increase with A because of the greater 
importance of the side boundary layers) for A = 0.25, 0.5, 1-0 and 2.0 by the 
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four hatchmarks on the ordinate axis in figure 5 .  For A = 0.25 and 0.5, the 
critical wave-number and Rayleigh number tend to zero and the k = 0 value, 
respectively, but for A = 1.0 and 2.0 the curves level off before reaching these 
values. [The critical Rayleigh number curve for A = 1.0 actually has a slight 

5 x  lo4 

Ra(k = 0) 

A=2.0 

A =  1.0 
Ru(k = 0) 

A=O 
5 x  10' I I I I I 

0 20 40 60 so 100 

Re + 

FIGURE 5. Critical Rayleigh number versus Reynolds number for Pr = 0.7 
and various aspect ratios. 

maximum at Re = 23 before levelling off.] Thus, at high aspect ratios or low 
Prandtl numbers long cells rather than rolls are preferred in the high Reynolds 
number limit. In the high aspect ratio case the longitudinal rolls suffer sufficient 
viscous damping in the side boundary layers to prevent their appearance at  the 
onset of convection. 

5.2. Growth rate curves 

Growth rate curves (as functions of the Reynolds number for given Ra and k) are 
given in Davies-Jones (1969). They show the general stabilizing influence of the 
shear on the disturbances, and the transitive nature of the disturbances at high 
Reynolds numbers. The phase velocities increase in magnitude monotonically 
with k and Re but depend only slightly 011 Ra. 

5.3. The structures and energy conversion properties of the cells 

Shear has the effect on all marginally stable perturbations of establishing a 
negative correlation between u' and v', and tilting the isopleths of w', 0' and p' 
in the direction of the shear (except for the isobars near the sidewalls which are 
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tilted in the opposite sense). Exceptions to this rule are longitudinal rolls where 
(naturally) the isopleths are always parallel to the sidewalls, and transitive 
disturbances where the isobars are sometimes tilted in the opposite sense. In  
general, the tilt of the vertical velocity and temperature fields is apparently 
caused by advection, and the tilt of the isobars by adjustment to the above 
fields. The direction of the pressure forces is therefore generally such as to give 
rise to a negative horizontal Reynolds atress. Since the inertia force, - Pr Re v‘, 
acting in the x direction enhances this effect, it  is not surprising that 3 is 
negative on the (cross-channel) average. 

We define an energy conversion ratio, W = {K . K‘)/{P. K ] ,  which is free of 
the arbitrary constant which enters into any linear, homogeneous boundary- 
value problem such as this one. W is the ratio of the rates of exchange between 
mean flow and perturbation kinetic energy and between potential and perturba- 
tion kinetic energy. We showed in 9 3 for longitudinal rolls that W cc Re2 and that 
9 is positive and independent of Pr when B = 0. At marginal stability W attains 
unity at  some Reynolds number in the range 10-25 for aspect ratios, A ,  in the 
range 0.5-4-0. Thus, at  higher Reynolds numbers, the perturbations gain more 
energy from the mean flow than they do from the release of potential energy. 

We now consider the effect of varying the Rayleigh number on the structure 
of longitudinal rolls. Without shear the horizontal paths of the fluid particles 
are perpendicular to the sidewalls. We can deduce from (1) with a/ax = 0 that 
the inertia force, - Pr Re v’, deflects the fluid particles to the left when B > 0 or 
the viscous term, Pr V u ’ ,  dominates the local acceleration, au’lat. However, for 
rapidly decaying modes where the local acceleration is the dominant term, the 
inertia force deflects the particles to the right, thereby inducing a positive, rather 
than negative, horizontal Reynolds stress. The transition between these two 
cases occurs at  R a  w 75. 

These results indicate that unstable stratification acts as a catalyst as far as 
release of mean flow kinetic energy is concerned. Without stratification the mean 
flow gains energy from the longitudinal perturbations, but with the presence of 
a small amount of unstable stratification, this energy conversion is reversed, and 
except at  low Reynolds numbers, the perturbations actually ‘feed’ more on the 
mean flow than on the potential energy of the system. Of course, the perturbations 
cannot sustain themselves, and cause the Couette flow to become unstable until 
the critical Rayleigh number is reached. 

In the absence of shear, the preferred modes of convection closely resemble 
‘finite rolls ’ aligned perpendicular to the side-walls (Davies-Jones 1970). Finite 
rolls are defined as “ cells with (only) two non-zero velocity components dependent 
on all three spatial variables’’ [see Davis 19671. As previously stated, shear tilts 
the preferred modes in the downstream direction and increases their wavelength. 
As a result we find that for Re 2 3 0 , g  is generally greater than unity. W increases 
with decreasing A or increasing Pr at a given Reynolds number because of 
increasing cell elongation (see figure 2 and 4). 

As we proceed in the direction of increasing k (keeping A ,  Pr, Re fixed) along 
the stability boundary, 9 decreases rapidly near k = 0 but much more slowly at  
higher k. W is positive in all the stationary cases we computed. We attribute the 
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stabilization of the short wave disturbances as due to the fluid particles traversing 
diagonal horizontal paths instead of ones which are nearly parallel to the sidewalls. 
All the fluid particles thus approach closer to the sidewalls in some part of their 
trajectories, and hence are slowed down, assuming that their viscous retardation 
increases more than linearly with I yI . 

We did not evaluate W for transitive modes because, if allowance is made for 
the interaction between the co-existing members of a transitive pair, W becomes 
a periodic function of time instead of a constant. However, we find that { E .  K'} is 
positive for each separate member. In  addition, with increasing wave-number or 
Reynolds number these disturbances become more decoupled from their asso- 
ciates in the transitive pair by becoming more localized on the side of the channel 
where the phase velocity assumes the value of the mean flow. This decoupling 
phenomenon at short wavelength has been described by Howard (1963) in 
connexion with a flow composed of a pair of shear layers with discontinuities in 
density as well as in mean flow at the interfaces. The disturbances become more 
stable a t  higher values of k and Re because of the increased internal dissipation 
associated with the localization. 

For unstratified three-dimensional Couette flow with A = 0.5, Re = 10 (no 
other cases were computed) we find that perturbation kinetic energy is converted 
into kinetic energy of the mean flow for k = 0.5 and 1.0 but the conversion is in 
the opposite sense at k 2 1.5. Even though they gain energy from the mean flow, 
the short wave perturbations decay because of strong viscous damping. Shortly 
above k = 2.0 the disturbances become transitive and begin to localize on one 
side ofthe channel. The w' andp' isopleths once more slope with the shear, except 
in one instance (k = 0.5) where the w' isopleths slope in the opposite direction. 
The pressure gradient force thus acts in such a direction as to give a negative 
Reynolds stress. However, at  short wavelengths, the inertia force, - Pr Re v', 
which deflects particles to the right since the disturbances are rapidly decaying 
(in the sense defined previously), dominates the pressure gradient force, and 
produces a positive Reynolds stress, and hence an energy loss by the perturbations 
to the mean flow. 

6. Summary and comparison with the vertical shear problem 
We find that short-wavelength disturbances are stabilized by the shear. (This 

is analogous to the stabilization of transverse rolls by vertical shear.) The critical 
Rayleigh number is never greater than the lowest Rayleigh number at  which a 
longitudinal disturbance can become unstable, the latter being independent of 
shear (as in the vertical shear case). The preferred mode of convection is, thus, 
always a longitudinally elongated cell but, because of the influence of the side- 
walls, it may not become a longitudinal roll in the high Reynolds number limit. 
This is in contrast to the vertical shear problem (without sidewalls) where the 
most unstable mode is always a longitudinal roll. As is typical of Couette flow 
problems, the short wave disturbances occur in pairs which propagate along the 
channel in opposite directions when shear is present. 

For both shear orientations, the isopleths of w', 0' and p' tilt in the direction 
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of the shear. Asai (1970) finds, however, that with vertical shear the transverse 
perturbations transform perturbation kinetic energy into that of the mean flow, 
while in our problem marginally stable disturbances of all wavelengths transfer 
energy from the mean flow to the perturbations. We also find that, except at 
low Reynolds numbers (typically 5 30), the preferred modes generally gain more 
energy from the mean flow than from the release of potential energy. 
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